4D printing

4D Priniting

Self-Assembly and Reaction

4D printing is printing 3D objects that can assembly into another object or preform a reaction to certain conditions. However, the objects need a catalyst to perform their transformation such as water, temperature, light, or other factors. One major player in this movement, who coined the term “4D printing” and created the Self-Assembly Lab, is Skylar Tibbits. He along with Stratsys’s R&D departments and the Connex 3D printer have made important progress in this field. This video clip of a self folding cube by the Self-Assembly Lab shows what can be done within the field of 4D printing. There are more videos from the lab located here.

He saw what nanotechnology was changing in medicine and he is applying the same idea to infrastructure and manufacturing. He isn’t looking to create smart materials that replace designers and engineers, but rather create “programmable materials that build themselves.” It will be interesting to see more to come from this field.

Related Posts

About the Author

Max Murphy is Mechanical Engineering student in his Junior year at California Baptist University. He is interested in the implications of 3D printing or positive manufacturing for mechanical design.  In the summer he is was an intern with Soundfit, one of the companies that is part of the Bay Area Advanced Manufacturing Hub (BAAM), where he is gained hands on experience with a 3D printer and scanner.  He was also an intern with Neodyne Biosciences working with the R&D and Q&A departments.

Biomimicry With 3D Printing of Shapes and Surfaces


Biomimicry is a approach to design that mimics specific systems or processes found in nature. It has been around a lot longer than 3D printing.  The collage depicts several innovative designs that are directly based on certain properties found in nature.




For example, Speedo’s Sharkskin swimsuit uses a counter-intuitive approach to reducing drag with a rougher surface that slightly increases turbulence. It’s modeled on the denticles on the surface of a shark’s skin that allow for faster movement than a completely smooth surface. The dimples on a golf ball have similar effect.

The slide show, 7 amazing examples of biomimicry, goes through them in better detail.

Also see the slide show titled “14 Smart Inventions Inspired by Nature: Biomimicry”.


Shinkasen Bullet Train

The Shinkansen Bullet Train is another great example of basing designs off things found in nature.  One of the problems with the Shinkansen train was the great loud noise that was created by the friction between the air and the train’s body.
Kingfisher beak and bullet train

“Eiji Nakatsu, an engineer with JR West and a birdwatcher, used his knowledge of the splashless water entry of kingfishers and silent flight of owls to decrease the sound generated by the trains.”
Excerpt from “Shinkansen Train” on Ask Nature


Kingfishers move quickly from air, a low-resistance (low drag) medium, to water, a high-resistance (high drag) medium. The kingfisher’s beak provides an almost ideal shape for such an impact. The beak is streamlined, steadily increasing in diameter from its tip to its head. This reduces the impact as the kingfisher essentially wedges its way into the water, allowing the water to flow past the beak rather than being pushed in front of it. Because the train faced the same challenge, moving from low drag open air to high drag air in the tunnel, Nakatsu designed the forefront of the Shinkansen train based on the beak of the kingfisher.
Excerpt from “Shinkansen Train” on Ask Nature

Screenshot (102)

This image is taken from “The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications” by Thomas Bachmann and Hermann Wagner, a great article that goes more in depth into the science behind the serrations on the feather.

Engineers were able to reduce the pantograph’s noise by adding structures to the main part of the pantograph to create many small vortices. This is similar to the way an owl’s primary feathers have serrations that create small vortices instead of one large one.”

Excerpt from “Shinkansen Train” on Ask Nature

The designers used what they observed in nature and applied it to the train to solve their problem.

Scott Sheppard‘s blog post, Eiji Nakatsu: Lecture on Biomimicry as applied to a Japanese Train,

Examples from Janine Benyus

Since writing her book, Biomimicry: Innovation Inspired by Nature, Janine Benyus has become a major figure in the Biomimicry movement by also co-founding the Biomimicry 3.8 and the Biomimicry Institute. Janine Benyus shares a lot of her thoughts and predictions in her one of a few TED Talk which is a great talk if you haven’t seen it already.

There are clearly a lot examples, past and present, of things that got their inspirations from nature.  It has been talked about a lot in regards to 3D printing because 3D printing offers a very high level of customization during the build process.   There are already 3D printed objects based on nature:

and many more.

“Biomimicry is a combination of science, technology, mathematics, and engineering which looks to nature as a teacher to solve modern human design challenges.  3D printing is rapidly changing the way the world interacts with building and making products, and Biomimicry offers a new perspective on this technology.”
Karen McDonald in Biomimicry and 3D Printing

Biomimicry will continue to influence modern 3D printing design principles; not because it is something new, but an approach that has been already applied to many fields.

Related Posts

About the Author

Max Murphy is Mechanical Engineering student in his Junior year at California Baptist University. He is interested in the implications of 3D printing or positive manufacturing for mechanical design.  In the summer he is was an intern with Soundfit, one of the companies that is part of the Bay Area Advanced Manufacturing Hub (BAAM), where he is gained hands on experience with a 3D printer and scanner.  He was also an intern with Neodyne Biosciences working with the R&D and Q&A departments.

Bay Area Advanced Manufacturing

Screenshot (123)

As a result of Soundfit winning second place at the Silicon Valley Startup Cup I thought I would take some time to reflect on the time I spent there and the things I learned.  I had the pleasure to work as an intern with one of the companies within the BAAM or Bay Area Advanced Manufacturing Hub last summer.  The hub is a coalition of San Leandro based companies all providing a “non-competing and complimentary” 3D printing service or a product.  The coalition employs a very interesting model for workspaces especially for 3D printing since each company has their own specialized service where they can come together and achieve win/win situations.  During my time there, I was a part and saw a lot of interaction between Type A Machines and Soundfit/3D Wares.  Whenever each company was giving tours of investors or other people they would always stop at each company work area to give each company a chance to briefly explain their service or product even if the people touring had no intent of using the service or product.  This convention enforced the strong sense of community and interdependence within BAAM.

As an intern I got the to wear many different hats at the startup and be a part of teams that directly and indirectly acted with Espen and the founders of Mind 2 Matter, Rod Wagner and Justin Kelly.  One project I was a member of was transforming a product designed for the sheet metal process to be properly designed for 3D printing.  Upon showing the metal designed product to the Mind-2-Matter founders, they discussed with us the various areas on the product that were going to fail if the product was 3D printed as is.  For example one of the insights for the 3D printing design principles was to add bosses to cylindrical features on a vertical wall because a 3D printer’s layer by layer printing process would not be able to make those features.   In just that ten minute, their expertise of the 3D printing process saved that project time, money, and frustration.   Over time I was able to gain domain expertise that earned the trust of the original team, so that even though I was an intern I was able to take part in several of the company’s strategy discussions. Also I was given the responsible for getting the incoming interns up to speed on the company’s procedures and on several projects.

Another great experience was being a part of a pitch in Silicon Valley Cup competition.  It was a unique experience that I haven’t really experienced in school; I learned three things from the pitch: bring a team, you don’t have to cover everything in the set time, and delegate roles to people at the pitch so the speaker doesn’t have to do everything.  Unlike the other companies, we had our whole team there in the pitch which gave the panel a true sense of the company and some of the panelist’s critical concerns were based on the team.  We struggled with the set time limit for the pitch so we all agreed a good strategy that we would employ next time was to use the unlimited time for discussing topics more in depth.  One area that ate up a lot of time was the speaker trying to find the correct slide while talking.  Easily we could have another or few other people to prep the slides for the main speaker.  This balance of duties makes the pitch smoother and more effective.  All of these things were brought up in a debrief we had after the pitch which also is very important to do after the event because trying to recall what things to improve or noticed is very hard to recall days/weeks later.

During my time at SoundFit/3D Wares, I got a sense that this interdependent community at BAAM are all rallied around the goal of putting San Leandro back on the map. It serves as a possible model for other 3D printing technology companies to come together and achieve win/win situations.  There were three different kind of projects that I would work: projects solely with SoundFit/3D Wares, projects with other BAAM companies, and projects with BAAM companies and outside companies.

None of the logos are mine, but I created the map.

BAAM (4) (1)




My new domain for 3D printing blog posts

This is my new website for 3D printing blog posts:  max3dprinting.com

A blog post about 3D printing and biomimicry should be coming soon

Here are the blog posts that I have done in the past:

3D Printing Tradeoffs and Optimization

3D Printing Evolution Functional Block Diagram

The Next Best Thing But Not Yet

3D Printer Combinations

3D Scanners-Current Limitations

3d Printing IP Issues

Thank you

Max Murphy