I attended a wonderful talk put on by GABA (German American Business Association) on 10/11/17 about how 3D bioprinting’s ability to print precise, complex and individual features has opened new roads for medicine. The speakers shared the current efforts to create organs and tissue and what the future has in store. The presentation including a diverse panel of six speakers, Dr. Jenny Chen, MD, Dr. Melanie Matheu, Dr. Mayasari Lim, Dr. Nabeel Cajee, DDS FICOI, Tom Anderton, who each explained the impact of bioprinting in industry, academia, education/global outreach, and patents.
Jenny Chen
Founder/CEO of 3DHEALS is trained as a neuroradiologist, and her company is focusing on curating healthcare 3D printing ecosystem. Her main interests include medical education, 3D printing in the healthcare sector, and artificial intelligence. She is also a current adjunct clinical faculty in the radiology department at Stanford Healthcare. She was also the event’s moderator and lead each Q&A section with each speaker as well as an open panel Q&A at the end.
Dr. Mayasari Lim
Founder and CEO of SE3D, a startup focused on next-generation bioprinting tools for accelerating research and education in the biomedical and biotech fields. Previously, she was a professor in Bioengineering at Nanyang Technological University (NTU), a top engineering university in Singapore. Her research expertise included stem cell engineering, bioprocess design, bioprinting and tissue engineering. She is greatly passionate about training next generation minds for the future of bioprinting. She currently teaches at the Fung Institute for Engineering Leadership at UC Berkeley. Her background obtained her Ph.D. degree in Chemical Engineering at Imperial College London and her BSc in Chemical Engineering at UC Berkeley. She believes the future outlook of 3D bioprinting will be used for creating personalized medicine, drug screening, tissue replacement and future organ transplant. She hopes to accelerate the future of bioprinting by offering educators an affordable bioprinters, coupled with comprehensive curriculum and laboratory teaching materials to trigger research and exploration.
She began the event with describing the three main ways of achieving bioprinting: laser-assisted bioprinting, inkjet bioprinting, and microextrusion bioprinting. Below are videos showing the various processes.
Laser-assisted bioprinting
Inkjet bioprinting
Microextrusion bioprinting
She pointed out the obstacles and tradeoffs in the bioprinting process; mechanical properties versus the biological interaction of the cells printed as well as the post-processing of bioprinting. The process of placing down the cells was the easy part, keeping the cells alive and maintaining their intended purpose in the structure was the difficult part. There are chemical, physiological, biological, mechanical, and cell to cell interaction that must be monitored. These factors can be influenced in a controlled environment by adjusting the temperature, pH, humidity, and other factors as well. This monitoring is critical to understanding how bioprinted structures can be suitable for the real world environment. She also explained the obstacle of iPS reprogramming factors to make sure the cells had specific tasks to perform when they were printed since it is hard to program the cells to do what they do.
Dr. Matheu
Co-founded Prellis Biologics in October 2016, with the mission to create fully vascularized human tissues and organs from transplantation. She orchestrated a cross-pollution solution of laser technology at the center of her Ph.D. thesis with biology to creating the tiny blood vessels, known as microvasculature, necessary for tissue engineering applications. Without microvasculature, organs are starved of oxygen and nutrients. Dr. Matheu brings her multi-disciplinary experience in specialized laser microscopy, cell biology, physiology, and biophysics to build microvasculature and additional layers of tissue with near instantaneous speeds and single-cell precision.
Consumer grade bioprinters do not have the resolution to print microvasculatures required for tissues and organs. They have a high resolution holographic 3D laser that very similar to 3D lithography. Hopefully, in the near future, consumer-grade bioprinters will be able to reach the resolution and precision needed to create the tiny blood vessels and Prellis’s process becomes more streamlined so they can make a dent in the global organ shortage.
Here is a gif from their website: https://www.prellisbio.com/ showing the process
Dr. Nabeel Cajee
Tom Anderton
Tom is currently at Squire Patton Boggs, he was formerly General Counsel, Secretary at Zonare Medical Systems and Vice President, Intellectual Property & Legal Affairs at Presidio Pharmaceuticals where he oversaw the legal function at Presidio. Before Presidio, he was the Associate General Counsel and Chief Patent Counsel at Monogram Biosciences, Inc., where he built Monogram’s IP portfolio. In the talk, he shared the history of patents related to 3D printing and bioprinting, the expiration of important patents in the additive manufacturing industry after 2009 have enabled the expansion of 3D printing into many different technology areas.
In Summary
While 3D printing is well underway for dental and prosthetics, significantly reducing time and costs of production, one of the most exciting developments is the possibility for bioprinting of tissue and organs. It will be interesting to see how bioprinting further impacts industry, academia, education/global outreach, and patents.